
Rubber Properties

Rubber Properties

Nitrile Rubber Mechanical Strength Fire Resistance Low Temp. Resistance Chemical Resistance Chemical Resistance

Giletilical Hesistalice	Chemical nesistance	Glieffical Hesistance	Chemical resistance
Material		Features	
Urethane Rubber	Superior in mechanical strength and abrasion resistance to other rubbers. Especi Excellent in oil resistance but poor in chemical resistance. Ester Type is Hydrolytic		properties. Can be used for applications such as Mechanical Stopper.
Nitrile Rubber (NBR)	Acrylic Nitrile Butadiene Rubber Economical general-purpose rubber excellent in oil resistance.	Used for various applications such as 0-rings	and gaskets.
Chloroprene Rubber (CR)	Chloroprene Rubber Well-balanced synthetic rubber excellent in weather, heat, oil and chemical n	resistance. Non-staining chloroprene rubber which min	imizes contamination from contacting materials is also available.
Ethylene Rubber (EPDM)	Excels in weather, low temperature and chemical resistance. Ca	an be used for general-purpose applications s	such as gaskets and doorstops.
Silicon Rubber (SI)	Excels in heat resistance and electric property (insulation). Physiologically safe and can be used for medical, food-related	and electronic devices which require heat re	sistance.
Fluororubber (FPM)	Expensive, but widely used with its excellent heat, oil, solvent a highest resistance to ozone, heat, oil and chemicals in rubbers		erally known as fluoropolymer and Viton®. Has the
Low Elasticity Rubber (Hanenaito®)	Excels in shock and vibration resistance and absorbs energy w Widely used as components for quiet and low-vibration produc		lity are equal to general rubbers.
Butyl Rubber (IIR)	Isobutylene Isoprene Rubber Excellent in heat, cold and weather resistance, and good in wa	ter and chemical resistance.	

Comparison of Allowable Temperature

Comparison of Chemical Resistance

	Urethane	Nitrile	Chloroprene	Ethylene	Butyl	Fluorine	Silicon	Low Elasticity
Gasoline Light Oil	0	0	0	×	×	0	△-○	Δ
Water	Δ	0	0	0	0	0	0	Δ
Strong Acid	×	0	0	0	0	0	Δ	Δ
Strong Alkali	×	0	0	0	0	×	0	0
Ether	×	×-△	×-△	0	△-○	×-△	×-△	Δ
Keton	×	×	×-0	0	0	×	0	×

 \bigcirc = Excellent, \bigcirc = Good, \triangle = Acceptable, \times = Not Acceptable

Indication of Hardness

Three hardness categories are used for MISUMI's Urethane, Rubbers and Sponges.

1)Shore A

Used to describe the hardness of Urethane and Rubbers.

"Shore A 70" means hardness measured by using type-A
Durometer in accordance with New JIS Standard K6253.

②ASKER C

Used to describe the hardness of Sponges.

"Asker C 25" means hardness measured by using a spring type hardness tester Asker C in accordance with SRIS 0101 (Standard by the Society of Rubber Industry, Japan).

For those two above, larger value indicates harder material.

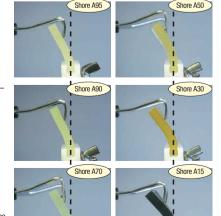
3Penetration

Used to describe the hardness of gel materials

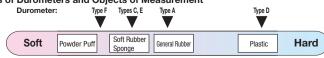
JIS K 2207 Standardized testing method. It indicates hardness by the penetrated length that a pin of specified weight penetrates in a sample perpendicularly.

The value is one penetration for 1/10mm length. (Larger value indicates softer

Hardness Images


Shore A95		★ Hard
Shore A90		
Shore A70	Softball	
	Plastic Eraser	
	Bicycle Tube	
Shore A15	Firm Gelatin	Soft

•Margin of Error: ±5


Durometer A	10	20	30	40	50	60	70	80	90	
(Shore A)	\neg	1	-1					-	-	_
Asker C	2030	40	50	60	70	80			90	
SRIS 0101 C Type	\neg		_	_					_	

Ref.: Bending Test by Hardness

Test Conditions: Standard Urethane, Thickness 5mm, Width 30mm, Length 40mm When pulled by push-pull gauge with the load 5N:

•Types of Durometers and Objects of Measurement

There are various types of durometer instrument as shown above to measure the hardness of a material, depending on the property of the measured material. For urethane and rubber, Type A (Asker Durometer Type A) compliant with JIS K 6253 is most commonly used. Hardness of materials softer than urethane and rubber is measured by Asker Type C or Type E. Shock absorbing gel is soft and super flexible material whose hardness is measured by Asker Type F.